Integer Programming - Unimodularity

Source: Bill, Bill, Bill, Alex book, Chapter 6.5

Problem:

$$(IP) \begin{cases} \text{maximize} & \mathbf{c}^T \mathbf{x} \\ \text{subject to} & A\mathbf{x} \leq \mathbf{b}, \end{cases}$$

where $\mathbf{c} \in \mathbb{Z}^n, \mathbf{b} \in \mathbb{Z}^m, A \in \mathbb{Z}^{m \times n}$, and $\mathbf{x} \in \mathbb{Z}^n$.

Let $P = {\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} \leq \mathbf{b}}$ be a polyhedron. Let $P_I = conv({\mathbf{x} \in \mathbb{Z}^n : A\mathbf{x} \leq \mathbf{b}})$ be the convex hull of integer points in P. If A and \mathbf{b} are rational, P is called a **rational polyhedra**.

Clearly, $P_I \subseteq P$. The polyhedron P is **integral** if $P = P_I$. (or if every face of P contains an integral vector) If P is integral, then (IP) can be solved as linear programming.

1: What can go wrong if we try to solve (*IP*) by solving the associated linear program and rounding its solution?

P_____

Solution: Rounding may not be possible.

Theorem 6.22 A rational polytope P is integral iff for all $\mathbf{w} \in \mathbb{Z}^n$, the value of max{ $\mathbf{w}^T \mathbf{x} : \mathbf{x} \in P$ } is $\in \mathbb{Z}$.

2: Prove Theorem 6.22. One direction is easy. Other direction: Let $\mathbf{v} \in P$ be the unique optimal solution corresponding to \mathbf{w} and show \mathbf{v} has integer coordinates.

Solution: By multiplying w by a constant, assume that for all other vertices $\mathbf{u} \neq \mathbf{v}$:

$$\mathbf{w}^T \mathbf{v} > \mathbf{w}^T \mathbf{u} + \mathbf{u}_1 - \mathbf{v}_1.$$

Hence \mathbf{v} is optimal also for $\mathbf{z} = (\mathbf{w}_1 + 1, \mathbf{w}_2, ...)$. Then $\mathbf{z}^T \mathbf{v} = \mathbf{w}^T \mathbf{v} + \mathbf{v}_1$ Since we assumed $\mathbf{z}^T \mathbf{v}$ and $\mathbf{w}^T \mathbf{v}$ are integral, also \mathbf{v}_1 is integral. Repeat for other components of \mathbf{v} .

What guarantees and integral polyhedra?

Recall $A^{-1} = \frac{1}{\det(A)} A^*$, where $A_{i,j}^* = \det(A_{-i,-j})$.

For square matrices:

Theorem 6.23 Let $A \in \mathbb{Z}^{m \times m}$. Then $A^{-1}\mathbf{b}$ is integral for every $\mathbf{b} \in \mathbb{Z}^n$ iff $\det(A) \in \{1, -1\}$.

3: Prove Theorem 6.23

Solution: \leftarrow Let det $(A) = \pm 1$. By Cramer's rule, also A^{-1} is integral. Hence $A^{-1}\mathbf{b}$ is integral.

 \Rightarrow If **b** is *i*th unit vector, then $A^{-1}\mathbf{b}$ is *i*th column of A^{-1} . Hence A^{-1} is integral and

 $det(A^{-1})$ is an integer. Since $1 = det(AA^{-1}) = det(A) \cdot det(A^{-1})$ and $det(A) \in \mathbb{Z}$ we conclude that $det(A) = det(A^{-1}) = \pm 1$.

For rectangular matrices:

We say any matrix $A \in \mathbb{Z}^{m \times n}$ of full row rank is **unimodular** if every $m \times m$ basis of A (full rank square submatrix) has determinant ± 1 .

Theorem 6.24 Let $A \in \mathbb{Z}^{m \times n}$ be of full row rank. The polyhedron $P = \{\mathbf{x} : A\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}\}$ is integral for every $\mathbf{b} \in \mathbb{Z}^m$ if and only if A is unimodular.

4: Prove Theorem 6.24

Solution: Recall in LP: A solution \mathbf{x} is called a basic feasible solution if \mathbf{x} has at most m non-zero entires and the columns of A corresponding to these entries are linearly independent.

 \leftarrow Let $\overline{\mathbf{x}} \in P$ be a vertex (using $\mathbf{x} \ge 0$). Pick basis *B* corresponding to $\overline{\mathbf{x}}$ by picking columns where $\overline{\mathbf{x}}$ is nonzero and extend. Use Theorem 6.23 on $B\overline{\mathbf{x}} = \mathbf{b}$.

⇒ Let *B* be a base of *A* and pick any $\mathbf{v} \in \mathbb{Z}^n$. Our goal is to show that $B^{-1}\mathbf{v} \in \mathbb{Z}^m$ since then Theorem 6.23 implies det(*B*) = ±1. Choose $\mathbf{y} \in \mathbb{Z}^m$ such that $B^{-1}\mathbf{v} + \mathbf{y} \ge \mathbf{0}$. Let $\mathbf{b} = B(B^{-1}\mathbf{v} + \mathbf{y}) = \mathbf{v} + B\mathbf{y} \in \mathbb{Z}^m$. Add zero components to $(B^{-1}\mathbf{v} + \mathbf{y})$, which gives $\mathbf{z} \in \mathbf{R}^n$ such that $A\mathbf{z} = \mathbf{b}$. Now $\mathbf{z} \in P$ and it corresponds to a basic feasible solution, hence $\mathbf{z} \in \mathbb{Z}^n$. Therefore $B^{-1}\mathbf{v} \in \mathbb{Z}^m$.

We say any matrix $A \in \mathbb{Z}^{m \times n}$ is **totally unimodular** if every square submatrix has determinant in $\{0, 1, -1\}$. In particular, all entries of A are in $\{0, 1, -1\}$.

HW question: A is totally unimodular iff $[A \ I]$ is unimodular (where I is $m \times m$ unit matrix).

Theorem 6.25 Let $A \in \mathbb{Z}^{m \times n}$. The polyhedron $P = \{A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ is integral for every $\mathbf{b} \in \mathbb{Z}^m$ iff A is totally unimodular.

Theorem 6.26 Let $A \in \mathbb{Z}^{m \times n}$. The polyhedron $P = \{A\mathbf{x} \leq \mathbf{b}\}$ is integral for every $\mathbf{b} \in \mathbb{Z}^m$ iff A is totally unimodular.

Note: An algorithm of Seymour decides whether a matrix A is totally unimodular in polynomial time.

5: Let A have values $\{0, 1, -1\}$ and every column has at most one 1 and at most one -1. Show that A is totally unimodular. *Hint: induction.*

Solution: Let N be a $k \times k$ submatrix. If k = 1 clear. If column with at most one non-zero, expand the determinant. If all columns have 1 and -1, matrix is signular.

6: Show that the incidence matrix $M \in \mathbb{R}^{|V| \times |E|}$ of directed graph G = (V, E) is totally unimodular. Matrix M is indexed by V and E. Edge $e = \overline{uv} \in E$ gives entries $M_{ue} = -1$ and $M_{ve} = 1$.

$$\begin{array}{c|cccc} e_1 & e_2 & & & e_1 & e_2 \\ \hline v_1 & v_2 & v_3 & & & v_1 & -1 \\ & & & v_2 & 1 & -1 \\ & & & v_3 & & 1 \end{array}$$

Solution: Note that each column of M has exactly one 1 and exactly one -1 entry. Moreover, all other entries are 0. By **5**, A is totally unimodular.

Theorem A matrix $A \in \mathbb{Z}^{m \times n}$ is totally unimodular iff for every $R \subseteq \{1, \ldots, m\}$ there is a partition $R = R_1 \cup R_2$ such that for all $j, 1 \leq j \leq n$.

$$\sum_{i \in R_1} a_{ij} - \sum_{i \in R_2} a_{ij} \in \{-1, 0, 1\}$$

7: Show that the incidence matrix $M \in \mathbb{R}^{|V| \times |E|}$ of an (undirected) bipartite graph G = (V, E) is totally unimodular. $M_{ue} = M_{ve} = 1$ for every $e = uv \in E$.

Solution: For any $R \subseteq V(G)$, partition R according to any bipartition $A \cup B$ of V(G), i.e., $R_1 := R \cap A$ and $R_2 := R \cap B$. Then for any $e \in E(G)$, write e = ab where $a \in A$ and $b \in B$. Then,

$$\sum_{u \in R_1} m_{ue} - \sum_{u \in R_2} m_{ue} = \begin{cases} 0, & a, b \notin R \text{ or } a, b \in R \\ 1, & a, b \notin R \text{ or } a \in R \text{ and } b \notin R \\ -1, & a, b \notin R \text{ or } a \notin R \text{ and } b \in R \end{cases}$$

so by the above theorem, we are done.